

Next-Gen B2C Service
Extensibility: Replace Custom
Scripts APIs with OCI API
Gateway

Learn how to leverage the OCI API Gateway and OCI Functions to
build a better custom API solution for B2C Service

September, 2020 | Version 1.01
Copyright © 2020, Oracle and/or its affiliates
Confidential – Public

2 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

TABLE OF CONTENTS

Introduction ... 3

Use Case .. 3

Design Overview ... 3
Process Diagram ... 4
Technical Diagram ... 5

Implementation ... 6

Before You Begin ! .. 6
SMS Payload ! ... 6

The Function " ... 7
Getting Integration Secrets " ... 7
Consuming the Webhook # .. 8
Integrating with B2C Service $.. 8
Test Your Function % .. 10

Publish to OCI # .. 11

Configure OCI API Gateway $... 11
Create the Gateway & ... 11
Test the Gateway ' ... 15

Conclusion .. 16

3 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

INTRODUCTION
Oracle B2C Service extensibility is improving by leveraging capabilities of Oracle Cloud Infrastructure (OCI). The suite of
tools that OCI provides allows you to build new customizations in much more flexible ways than previously possible with B2C
Service extensibility. In this guide, we will explore using the OCI API Gateway and OCI Functions as a replacement for
providing custom API endpoints using custom scripts or Customer Portal.

B2C Service customers need custom API endpoints to extend B2C Service capabilities in circumstances where an external
service needs to call B2C Service but cannot use the REST APIs. Typically, these are external webhooks that need to call B2C
Service such as those provided by SMS and telephony vendors.

Historically, customers have used ! scripts to provide custom API endpoints in B2C Service. These scripts, while
convenient to implement on the B2C Service platform, require the implementer be aware of the security and scaling
implications that are introduced with these types of scripts. It has never been a best practice to implement a customization
like this, however, alternatives were also difficult to implement. Until now!

The OCI API Gateway service provides solutions to all of the issues that a custom API implemented in custom scripts
introduce, namely authentication & authorization, rate limiting, scalability, and monitoring.

Use Case
For this post, we will use an example organization that needs to implement an API that can receive a webhook from an SMS
service for the creation of service incidents via SMS. To keep the example simple, any inbound SMS will create a new
incident, but the business logic could be updated as needed to account for incident updates or other B2C Service data
operations.

Design Overview
The solution is comprised of the following components from OCI:

• API Gateway allows us to expose a secure HTTP endpoint over the public internet with rate limiting and CORS
applied to it.

• Oracle Functions allows development, deployment, and execution of applications that implement business logic
without worrying about the infrastructure where it will execute. The API Gateway will trigger a function which will
consume the SMS payload and integrate with B2C Service via the REST API.

• OCI Vault allows us to store the credentials for a REST API service user for B2C Service so that our function can
integrate with B2C Service while retrieving credentials securely at runtime.

• The OCI CLI is a toolkit that you install on your computer to interact with OCI via the command line on your local
machine.

Be sure to review the pricing documentation for OCI to plan the cost for your OCI usage. You can use the cost estimator to
estimate your usage costs.

4 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

Process Diagram
The following diagram demonstrates the end-to-end flow that this example process will demonstrate:

SMS Webhook triggered
from third party service to

API Gateway

API Gateway
authorizes the

request

Function Integrates
with B2C Service

REST API creating
incident

API Gateway
passes payload
to the assigned

OCI Function

End Process

5 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

Technical Diagram
The following diagram demonstrates where the different components in this solution reside and how they communicate
with each other.

1. SMS triggers a webhook from SMS service to OCI API Gateway

2. OCI API Gateway authenticates the webhook request and passes the payload to an OCI Function

3. The OCI Function transforms the SMS payload to an incident creation request for B2C Service

4. The OCI Function creates an incident in B2C Service via the REST API

! B2C Service

Incidents

REST API

!
Internet

!
SMS Web

Hook

" OCI Services

API Gateway

OCI Functions

Your Custom Code #
Resides in OCI Functions

6 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

IMPLEMENTATION
The implementation for this effort will be delivered entirely using tools in Oracle Cloud Infrastructure; customizing B2C
Service is not required for this type of solution! The only details needed from B2C Service will be a service account for
integration with the B2C Service REST APIs.

The implementation will be completed in the following steps:

1. OCI tenancy configuration. This step needs to be completed outside the scope of this guide. Your tenancy needs to
be configured with a public subnet that our OCI API Gateway can use to expose a public endpoint and for our
function to make public REST API calls. It also needs to be configured with the tenancy and compartment policies
that allow the API Gateway to call functions and for functions to access secrets.

2. Development of a function that will take an SMS payload and create a B2C Service incident from the information in
that payload

3. Configuration of an application in IDCS to manage the permission model that needs to be applied to our API

4. Configuration of an API Gateway that will expose an HTTP endpoint for our SMS vendor to post data to.

Before You Begin !
Be sure that you have the following items available to you before you begin:

1. B2C Service account username and password for integration with the REST API
2. An OCI tenancy with a compartment identified for this implementation
3. Permissions in your compartment to manage the implementation for OCI API Gateway, OCI Functions, OCI

VCN, Vault/Secrets and any other required OCI capabilities
4. A SMS service provider

SMS Payload !
In order to deliver a generic example in this guide, the following payload will be the assumed payload provided by the SMS
provider. You will need to update the expected payload in your implementation based on the information provided by your
SMS vendor.

{
 "account_sid": "ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
 "api_version": "2010-04-01",
 "body": "McAvoy or Stewart? These timelines can get so confusing.",
 "date_created": "Thu, 30 Jul 2015 20:12:31 +0000",
 "date_sent": "Thu, 30 Jul 2015 20:12:33 +0000",
 "date_updated": "Thu, 30 Jul 2015 20:12:33 +0000",
 "direction": "outbound-api",
 "error_code": null,
 "error_message": null,
 "from": "+15017122661",
 "messaging_service_sid": "MGXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
 "num_media": "0",
 "num_segments": "1",
 "price": null,
 "price_unit": null,
 "sid": "SMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
 "status": "sent",
 "subresource_uris": {

7 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

 "media": "/2010-04-
01/Accounts/ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Messages/SMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Me
dia.json"
 },
 "to": "+15558675310",
 "uri": "/2010-04-
01/Accounts/ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Messages/SMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.js
on"
 }

The Function "
This guide comes with a python file that provides the business logic that will consume the webhook payload above and
create a B2C Service incident. It can act as the foundation of a similar implementation based on your own business
requirements.

Note: Prerequisites to this section are reviewing the F(n) project documentation for function development and local testing
and OCI Functions for cloud deployment. This section will not go into the implementation process of a function since the
product documentation supplies that information already.

Getting Integration Secrets "
One of the benefits of using OCI Functions is that you can manage environment variables for your functions so that you do
not need to hard-code variables like integration details. Also, there is the added benefit of storing secret data in the secure
OCI vault service so that environment variables that need to be secured, such as usernames and passwords, are completely
isolated from the function script.

The example below demonstrates getting the required environment variables for integration with a B2C Service site. The
variables are stored at the function’s application so that they can be shared across all functions in the application.

When the function is run in OCI, the script expects that the username and password variables be retrieved from Vault, so we
use the OCID of the secrets that represent those variables from setting up the secrets (see OCI Vault for more information).
When run locally (for testing), the function expects that the variables are available as regular function configurations.

 # Params that will be assigned based on where this function is running
 username = None
 password = None

 # Get environment vars from F(n)
 hostname = os.getenv("b2cservice_hostname")

 # If the function is running in OCI, then retrieve secrets from vault
 if 'oci' in app_id:
 #logging.getLogger().debug("Using OCI config settings")

 username_ocid = os.getenv("b2cservice_username_ocid")
 password_ocid = os.getenv("b2cservice_password_ocid")

 # By default this will hit the auth service in the region the instance is
running.
 signer = oci.auth.signers.get_resource_principals_signer()

 # Get instance principal context

8 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

 secret_client = oci.secrets.SecretsClient(config={}, signer=signer)

 # Get B2CService Credentials from Vault
 username = read_secret_value(secret_client, username_ocid)
 password = read_secret_value(secret_client, password_ocid)
 # else, if running locally, then use env params
 else:
 #logging.getLogger().debug("Using local config settings")

 username = os.getenv("b2cservice_username")
 password = os.getenv("b2cservice_password")

Consuming the Webhook #
Load the data into a variable from the function’s data parameter. This process is similar for any function that will have data
posted to it.

 # Parse Webhook Body
 try:
 webhook_data_str = data.getvalue().decode('utf-8')
 #logging.getLogger().debug(webhook_data_str)

 webhook_data = json.loads(webhook_data_str)

Integrating with B2C Service $
Next, we will call a few convenience methods in sequence to perform the following steps:

1. Determine if a contact exists that contains the phone number that was the source of the SMS. If not, then a new
contact is created with a generic first and last name since no other contact information exists at this point.

2. Create an incident from the SMS. The previously retrieved/created contact will be associated to the incident as the
primary contact, the subject will be the body of the SMS, and a thread will be created with the full payload of the
inbound webhook for reference to the original data.

 if 'body' in webhook_data:
 sms_body = webhook_data['body']
 sms_from = webhook_data['from']
 sms_to = webhook_data['to']

 # Check to see if there is a contact with the "to" phone number
 contact_id = get_contact_by_mobile(osvc_client, sms_from)

 # If no contact was returned, then create one
 if contact_id == None:
 contact_id = create_contact_from_sms(osvc_client, sms_from)

 # Create an incident from the inbound thread
 new_incident = create_incident_from_sms(osvc_client, contact_id, webhook_data)

The first call to `get_contact_by_mobile` will query the contact by phone number. If there is no result, then `None` is
returned and we know that we need to create a new contact.

9 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

def get_contact_by_mobile(osvc_client, number) :
 contact_results = osvc_client.get("/services/rest/connect/latest/contacts?q=phones.number
= '{}'".format(number))

 logging.getLogger().debug(json.dumps(contact_results, indent=3))

 if 'items' in contact_results and len(contact_results['items']) > 0 and 'id' in
contact_results['items'][0]:
 return contact_results['items'][0]['id']

 return None

If required, we call `create_contact_from_sms`, which will create a new contact record with the phone number used to
generate the SMS message.

def create_contact_from_sms(osvc_client, number):

 contact = {
 "name": {
 "first": "SMS",
 "last": "User"
 }
 }

 create_result = osvc_client.post("/services/rest/connect/latest/contacts",
json.dumps(contact))

 if id in create_result and create_result['id'] != None:
 contact_id = create_result['id']

 new_phone = {
 "number": number,
 "phoneType": {
 "lookupName": "Mobile Phone"
 }
 }

osvc_client.post("/services/rest/connect/latest/contacts/{}/phones".format(contact_id),
json.dumps(new_phone))

 return contact_id
 else:
 raise Exception(create_result)

Lastly, we call `create_incident_from_sms` passing in the contact and SMS data to create the incident and incident thread
as mentioned above.

def create_incident_from_sms(osvc_client, contact_id, webhook_data):
 subject = webhook_data['body']

10 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

 new_incident = {
 "subject": subject,
 "primaryContact": {
 "id": contact_id
 }
 }

 create_result = osvc_client.post("/services/rest/connect/latest/incidents",
json.dumps(new_incident))

 if 'id' in create_result and create_result['id'] > 0:
 incident_id = create_result['id']

 # save the SMS body as a note to the incident for record keeping
 new_thread = {
 "text": json.dumps(webhook_data, indent=2),
 "entryType": {
 "lookupName": "Note"
 },
 "contentType": {
 "lookupName": "text/plain"
 }
 }

 logging.getLogger().debug(json.dumps(new_thread, indent=3))

osvc_client.post("/services/rest/connect/latest/incidents/{}/threads".format(incident_id),
json.dumps(new_thread))

 return create_result
 else:
 logging.getLogger().error("Could not get incident ID from create results")

 raise Exception(create_result)

Test Your Function %
Now that we understand the business logic of our function’s script, we can test it locally using the F(n) CLI. This document
does not explore how to deploy a function to the local F(n) service, but that is covered by the F(n) documentation. In
summary, follow these steps:

1. Create an application for your function using the F(n) CLI.

2. Add any application-wide configurations that are applicable (likely the integration variables for OSvC as those
would be shared across all of the application’s functions that need to integrate to B2C Service).

3. Create the function using the `fn init` command.

4. Copy the `func.py` and `osvc.py` files from this example into your function’s directory.

5. Deploy the function locally.

6. Use the shell to pipe a demo payload to your function while you invoke it.

Assuming you have configured your function properly, you should see a success message once your functions finishes the
invoke routine. And, there will be a new incident in B2C Service where you can verify that the script worked as expected.

11 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

Request:

echo -n '{"account_sid":"ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX","api_version":"2010-04-
01","body":"McAvoy or Stewart? These timelines can get so confusing.","date_created":"Thu, 30
Jul 2015 20:12:31 +0000","date_sent":"Thu, 30 Jul 2015 20:12:33 +0000","date_updated":"Thu,
30 Jul 2015 20:12:33 +0000","direction":"outbound-
api","error_code":null,"error_message":null,"from":"+13365550622","messaging_service_sid":"MG
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX","num_media":"0","num_segments":"1","price":null,"price_unit
":null,"sid":"SMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX","status":"sent","subresource_uris":{"media"
:"/2010-04-
01/Accounts/ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Messages/SMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Me
dia.json"},"to":"+15558675310","uri":"/2010-04-
01/Accounts/ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Messages/SMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.js
on"}' | fn invoke osvc-webhooks sms-to-incident

Response:

HTTP/1.1 200 OK
Content-Length: 22
Content-Type: application/json
Date: Tue, 15 Sep 2020 14:49:00 GMT
Fn-Call-Id: 01EJ93TYPANG8G00GZJ0000021
Fn-Fdk-Version: fdk-python/0.1.18

{"message": "success"}
{"message": "success"}

Publish to OCI #

Publishing a function to OCI is like publishing it locally, but there are a few differences that the documentation outlines as
you move from your local testing to OCI. Namely, you will need to account for the required attributes, such as your
function’s VCN subnet attribute, that need to be added when deploying to OCI.

Follow the processes outlined in the OCI Functions documentation to deploy your application and function to OCI. Be sure
to also setup the Vault secrets for the B2C Service Username and Password as the script expects those variables to be
secured by Vault.

Testing your function in OCI may still be performed via the command line tools in order to verify that it is working as
expected. You only need to start testing HTTP posts after the next section is complete.

Configure OCI API Gateway $
It’s time to create and expose an HTTP endpoint that a webhook can call in order to post data to your newly created
function. We will walk through the high-level configuration steps in this guide, but refer to the API Gateway documentation
for more detailed instructions for implementation.

Create the Gateway &
Navigate to Developer Services > API Gateway in the OCI console.

12 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

Ensure that you are in the same compartment as your function. Click “Create Gateway” to create a new API Gateway in the
same compartment as our function. Then, fill out the fields in the form that is presented. You will need to be sure to use a
public subnet so that your gateway is exposed to the public internet.

The gateway may take a few minutes to be created.

Once the gateway is created, click on the “Deployments” link under “Resources” on the left side of the page. Then, click
“Create Deployment”.

13 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

The next few steps will determine how your exposed REST endpoints will work. Use best-practices or required
implementation paradigms for CORS support, etc. established by your organization. And, ensure that you are using an
authorization mechanism so that your endpoint is not freely exposed to the public internet.

Create the basic information first. The “Path Prefix” field is the root of your API. You should name it something common to
all the endpoints that will be below it.

Setup an authentication type to secure your endpoint. In the case of an SMS provider, it’s likely that you would implement a
custom authorizer function to verify the sending IP address in order to validate the request; many SMS providers don’t
directly authenticate with webhook endpoints. In cases like this, the ability to leverage custom functions means that you can
create any mechanism required to authenticate based on your integrator’s capabilities. Of course, you can use an identify
provider, like IDCS, for OAuth, JWT, and SAML authentication solutions.

14 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

It’s also a good idea to setup CORS and rate limiting policies as per the requirements of your implementation.

Click “next” and review your API Gateway deployment. Then, click “create”.

Your changes will deploy within your gateway. It may take a few minutes to provision.

15 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

Test the Gateway '
Once deployed, it’s time to test your API call from the public internet. We can use cURL from our shell to test.

Note: You may need to update your authorizer function to allow requests from your IP address or the proper parameters
based on how that authorizer function was implemented.

curl -X "POST" "https://<gatewayid>.apigateway.us-ashburn-1.oci.customer-
oci.com/webhooks/sms-to-incident" \
 -H 'Content-Type: application/json; charset=utf-8' \
 -d $'{
 "account_sid": "ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
 "api_version": "2010-04-01",
 "body": "McAvoy or Stewart? These timelines can get so confusing.",
 "date_created": "Thu, 30 Jul 2015 20:12:31 +0000",
 "date_sent": "Thu, 30 Jul 2015 20:12:33 +0000",
 "date_updated": "Thu, 30 Jul 2015 20:12:33 +0000",
 "direction": "outbound-api",
 "error_code": null,
 "error_message": null,
 "from": "+13365550652",
 "messaging_service_sid": "MGXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
 "num_media": "0",
 "num_segments": "1",
 "price": null,
 "price_unit": null,
 "sid": "SMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
 "status": "sent",
 "subresource_uris": {
 "media": "/2010-04-
01/Accounts/ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Messages/SMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Me
dia.json"
 },
 "to": "+15558675310",
 "uri": "/2010-04-
01/Accounts/ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Messages/SMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.js
on"
}'

If your configuration is correct, then you should see a reply from your function that the result was a success! Next, check to
ensure that your test created an incident in B2C Service. If so, then you should be ready to connect your SMS provider’s
webhooks to your new HTTP endpoint.

16 CX BLOG | Next-Gen B2C Service Extensibility: Replace Custom Scripts APIs with OCI API Gateway | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates | Confidential – Public

CONCLUSION
You should now be able to create a custom HTTP endpoint using OCI API Gateway for custom API endpoints that you need
for B2C Service. This approach allows you to build and scale your custom API needs in a secure and supported fashion.

 CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com.
Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

 Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without
notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties
and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed
either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
our prior written permission.

This device has not been authorized as required by the rules of the Federal Communications Commission. This device is not, and may not be, offered for sale or lease, or sold or
leased, until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group. 0120

Disclaimer: This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing
decisions. The development, release, timing, and pricing of any features or functionality described in this document may change and remains at the sole discretion of
Oracle Corporation.

